Nanoparticles: Facilitating Targeted Drug Delivery in Cancer Therapy - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Nanoparticles: Facilitating Targeted Drug Delivery in Cancer Therapy
Engineering nanoparticles with optimal properties for use in cancer therapies.


Pharmaceutical Technology
Volume 37, Issue 3, pp. 48-52

Designing nanoparticles for selective targeting

PharmTech: Could you describe your research on nanoparticles as targeted drug delivery systems in the treatment of cancer?

Langer (MIT and BIND Biosciences): The idea of employing targeted nanoparticles to bring cancer drugs to the site of disease and increase their safety and effectiveness has been around for several decades, but until recently the solution has been elusive. A major obstacle has been the inability to achieve the optimal interplay of particle characteristics that confer targeting of diseased cells, evasion of particle clearance mechanisms, and controlled release of the encapsulated drug payload.

In the mid 2000s, Omid Farokhzad at Harvard Medical School and I developed a new approach for targeting of drug-loaded polymeric nanoparticles to disease sites, including cancer cells and diseased vasculature. The technology is based on a novel self-assembly process which allows formation of nanoparticle libraries consisting of hundreds or even thousands of distinct nanoparticle formulations. We developed methods to screen these particles to identify the ones with the optimal properties for diseased-tissue targeting and avoidance of off-target tissues. Importantly, the particles we developed are composed of biocompatible and biodegradable polymers that are commonly used in other pharmaceutical products such as biodegradable microspheres and PEGylated proteins.

Zale (BIND Biosciences): BIND is now using this platform to develop targeted nanoparticles called Accurins to treat cancer and other diseases. The company has set about developing Accurins for clinical evaluation. The most advanced of these nanoparticles is BIND-014, an Accurin targeted to a cell-surface receptor expressed in all major solid tumor types. BIND-014 contains the chemotherapeutic agent docetaxel, which is a blockbuster drug in its own right, with approvals in five solid tumor indications, including breast, lung, and prostate. BIND-014 has just completed a Phase I clinical trial and is advancing into Phase II. The early results for BIND-014 are very promising. We have seen that the drug behaves very differently from conventional docetaxel, including showing signs of activity at relatively low doses and in tumors where docetaxel is not normally used.

Zhao (NTU): Our multifunctional meso-porous silica nanoparticles for cancer-targeted and controlled drug delivery have three components—the mesoporous silica nanoparticle core, the amino-β-cyclodextrin, the PEG polymers functionalized with an adamantane (Ad) unit at one end and a folate (FA) unit at the other end (Ad-PEG-FA) (18). The surface of mesoporous silica nanoparticles is firstly functionalized with amino-β-cyclodextrin rings bridged by cleavable disulfide bonds, blocking drugs inside the mesopores of the nanoparticles. The Ad-PEG-FA polymers are immobilized onto the nanoparticle surface through strong -cyclodextrin/adamantane complexation. The multifunctional nanoparticles can be efficiently trapped by folate-receptor-rich cancer cells through receptor-mediated endocytosis, where they then rapidly release the loaded anticancer drug inside the cell when triggered by the acidic pH and intracellular glutathione.

Several functions are built onto the multifunctional nanoparticles to deliver drugs in an optimal fashion. These functions include:

  • PEGylated coating on the nanoparticle surface to enhance long-term stability of the nanoparticles under physiological conditions
  • Active cancer targeting by the folate ligands attached onto the nanoparticle surface
  • pH-triggered drug release to allow drug released within acidic intracellular compartments such as endosome and lysosome (pH 5.0–5.5)
  • Positively charged nanoparticle surface under acidic conditions to facilitate the transfer of the nanoparticles from endosome to cytoplasm
  • Glutathione-induced cleavage of the disulfide bonds to further enhance the drug release in the cytoplasm of cancer cells.

The engineering of these functions onto the single nanoparticle entities significantly enhances the efficacy of anticancer drug delivery to cancer cells, while reducing the cytotoxic effects on healthy cells. In vivo experiments demonstrate that doxorubicin-loaded multifunctional mesoporous silica nanoparticles could effectively release doxorubicin to tumor sites resulting in significant inhibition of the tumor growth.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
29%
Breakthrough designations
10%
Protecting the supply chain
43%
Expedited reviews of drug submissions
10%
More stakeholder involvement
10%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here