Foam Granulation - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Foam Granulation
The authors review developments in wet granulation using a twin-screw extruder.

Pharmaceutical Technology
Volume 37, Issue 3, pp. 68-72

Comparing foam and conventional wet granulation

Table I: Differences between foamed and liquid binder addition on granulation.
A study at pilot-scale flow rates (20-40 kg/h) compared foamed-binder addition and direct liquid-injection on granulation (6). A methylcellulose binder (Dow, Methocel A15 PLV) was used at two concentrations, 6% and 11% (w/w), relative to a-lactose monohydrate powder. Two screws were tested in the work to produce differing axial compression characteristics (which was mentioned previously as an important factor for granule growth inside the extruder) with changing flow rate: one with a single pair of mixing elements producing lower axial compression (LAC) and a second with two pairs in series to provide a more restrictive flow path and higher axial compression (HAC). Notable differences between the two methods of granulation are summarized in Table 1. The granule properties from the study showed that comparable sizes and intragranular porosity were achieved by either method, provided appropriate conditions were used. The reduced requirement for liquid in the process was a comparable finding to that found with high-shear batch mixers (15).


Wet granulation in twin-screw extrusion machinery has several key advantages over conventional methods, but to advance in acceptance for GMP production, its operations need to be better understood and challenges regarding process stability need to be solved. Continuous foam granulation is a new, robust technique that solves the process- surging issues that relate to poor powder wetting by conventional, liquid-addition methods. The high spreading tendency of foam in granulation, versus the immediate soaking nature of liquids, produces more uniformly wetted powders and increases the overall lubricity of the process, which benefits wear behavior of the machine and minimizes dissipative heating of the product. With comparable particle properties to conventional wet granulation, foam granulation gives formulators greater flexibility in achieving production goals.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here