An Integrated Prefilled Syringe Platform Approach for Vaccine Development - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

An Integrated Prefilled Syringe Platform Approach for Vaccine Development
The authors describe a holistic and integrated approach to focus on the linkage of the prefilled syringe with the four phases of product design, development, operation, and control.


Pharmaceutical Technology
Volume 37, Issue 5, pp. s12-s18

Integrated prefilled syringe toolbox for vaccine development

Successful development of a vaccine product in prefilled syringes requires careful evaluation of the interaction between the formulation and primary packaging components. In support of each vaccine, a QbD approach will be used to design systematic product and process development studies and ensure a comprehensive data package. It is, therefore, crucial that a platform approach for these development efforts be implemented, in which there is detailed characterization and fundamental understanding of the various component attributes and associated variability within the platform prefilled syringe systems. In addition, the prefilled syringe system selected for the platform approach must also fit well with the existing manufacturing and production capability. To achieve a robust and flexible prefilled syringe platform, it is also beneficial to form a strategic alliance with a reliable supplier that has a good reputation of quality control. Processing and quality control compliance are vital for a successful vaccine product development and subsequent licensure. In summary, we propose a holistic and integrated approach to focus on the linkage of prefilled syringe in the following areas:

  • Target disease/health policy/user requirement
  • Formulation design
  • Prefilled syringe components
  • Manufacturing process (site and equipment)
  • Business/supply chain/procurement
  • Regulatory and quality compliance requirement.


Figure 3: Integrated platform toolbox approach for vaccine product development in prefilled syringe.
It is important to recognize there is significant interdependence between these areas, where an integrated platform toolbox is warranted and these six aspects are connected into the four phases of product design, development, operation, and control (Figure 3). The product design phase involves integration of the prefilled syringe as a crucial part when considering the complex health policy and user requirements imposed by different global geographic regions as well as private market competition. The product development phase focuses on the prefilled syringe as an integral part of the vaccine product due to the multiple contacts and potential interactions with the diverse molecular properties of antigens. In particular, particles characterization pertinent to silicone interactions is crucial because vaccines are prophylactic treatment to elicit an immune response before sick.

The emphasis of product operation phase is to link the prefilled syringe to the product performance per design requirements and supplier process capability and quality control. As a result, a key focus will be on supplier collaboration to understand their process capability and improvements. Lastly, quality control of supplier with respect to incoming components, as well as manufacturing process with respect to both site and equipment, must be implemented with periodic review mechanism within the regulatory compliance framework to assure quality vaccine products delivered to the patients.


Figure 4: Fishbone diagram of detail attributes as basis for risk assessment for selection and implementation of prefilled syringe toolbox.
In addition, the six areas are divided into nine categories with detail attributes under each category based on technical considerations, prior project experience, and learning. These attributes can be summarized in a fishbone diagram, as shown in Figure 4, to form the basis of risk assessment to select and implement different feasible options for a standard toolbox approach. In summary, the standard work stream, when combined with a toolbox approach, will drive down the development risk with information that allows plug and play, as well as supply of standardized component material that result in lower cost of goods. Furthermore, the platform approach can be improved and is expandable with accumulated product experience in the future after joint efforts with a formulation group and suppliers.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
26%
Attracting a skilled workforce
29%
Obtaining/maintaining adequate financing
14%
Regulatory compliance
31%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology,
Click here