Bioprocessing Advances in Vaccine Manufacture - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Bioprocessing Advances in Vaccine Manufacture
Advances in techniques and single-use systems are revolutionizing vaccine manufacturing.

Pharmaceutical Technology
Volume 37, Issue 8, pp. 54-56

Going modular
Going modular is the next advancement in bioprocessing hardware. It is closely related to the adoption of SUS technologies and involves housing SUS bioprocessing equipment within their own cleanroom cabinets—whether portable prefabricated trailers or equipment sealed within dedicated isolator cabinets—with these increasingly designed for plug-and-play simplicity. Bioprocessing facilities that formerly required years for planning and construction can be brought on line in a matter of months or even weeks. SUS have become common in less than a decade, in as short as 5 or 10 years; however, we may comparably be talking about industry widespread adoption of flexible bioprocessing modules and plug-and-play factories. Vaccines are expected to be one of the first product sectors affected by this trend. Modular technology will accelerate worldwide proliferation of vaccine manufacturing, including transfer of bioprocessing to lesser-developed countries. Even easier than with SUS process lines, modular systems allow whole plants to be essentially cloned, potentially allowing cGMP manufacture in many developing countries. Many foreign countries are and can be expected to demand local vaccine manufacture, particularly once modular facilities become commonplace, and equipment vendors plan to actively pursue this market.

Companies developing modular systems for vaccine manufacture include G-Con, which is working with partners, including Sartorius Stedim Biotech and GE/Xcellerex. For example, Project GreenVax, a privatepublic consortium, is currently constructing an influenza vaccine manufacturing facility (to be operated by G-Con, developer of the modular units being used) in Texas for manufacture of recombinant tobacco plant-expressed influenza vaccines, with a projected final scale capacity of 100 million doses per month [1.2 billion doses/year], according to company projections and production costs of pennies/dose compared with conventional dollars/dose for conventional egg-culture manufacturing. The Project Greenvax influenza vaccine-manufacturing facility, subsidized by biodefense funding, uses single-use equipment, housed within plug-and-play-type modular trailers, using tobacco plant expression technology. Medicago and other companies are also developing vaccines using tobacco-plant expression.

Expression systems
Improved versions of currently-predominate expression systems (i.e., genetically-engineered cell lines such as Chinese hamster ovary [CHO], yeast, and E. coli) for recombinant protein expression are further making vaccine manufacture easier and cost-effective and reducing the scale and investment required to manufacture products. The BioPlan annual survey of bioprocessing professionals and other studies show a rather consistent doubling of mammalian-cell protein expression and product yield about every five years, with yields now typically in the upper 2-3 g/L (bioreactor volume) range. Newer expression systems coming on line promise even higher yields and/or cost-effectiveness, with yields of more than 30 g/L being reported. These upcoming systems include plants (both laboratory-grown and field-grown), such as from iBio (Newark, DE); transgenic animals; PER.C6 and other novel high-yield human-cell lines; and various bacteria other than the usual E. coli. Using the same manufacturing systems and culture media, these new systems produce the same amount of product at commensurately lower cost and often much faster. This higher yield has lead to US biodefense programs providing R&D support for diverse vaccine-expression systems.

Thus, the same equipment can essentially be used to manufacture twice as much product as what was possible only about five years ago. These improvements, however, come amidst intense regulation as major changes in products' bioprocessing are only implemented for new bioprocesses/products as they are developed with established processes rarely undergoing major changes. Upcoming new bioreactor technologies will further increase vaccine-manufacturing flexibility and reduce costs. This includes perfusion. Capillary hollow fiber perfusion bioreactors being developed by FiberCell Systems, for example, are expected to comparably produce up to 1000 x (based on bioreactor size) the output from conventional bioreactor (e.g., a 50-L desktop perfusion bioreactor matching the overall output of a 5000-L bioreactor).

Purification technologies
Novel purification technologies are also in development. These improvements are much needed, as advances in upstream manufacturing (everything through product formation in the bioreactor) causing capacity constraints and problems, because later downstream processing, primarily purification, have not advanced as rapidly as expression systems, and other upstream technolgies have. The BioPlan study shows that many facilities are considering upgrading (i.e., adopting, new purification technologies). This trend includes 54% considering high-capacity chromatography resins; 44%, single-use filters; 38%, automated buffer dilution systems; and 35%, single-use tangential flow filtration. Other advances being adapted for large-scale use include simulated moving bed chromatography systems and membrane filters, which are starting to replace chromatography columns. Cast-in-place "monolithic" chromatography media, rather than labor-intensive packing of columns, are yet another example of improvements approaching adoption for commercial-scale manufacture.

Looking ahead
Further practical advances and synergies can be expected when these technological advances are combined, thereby resulting in simpler, cheaper, and transportable vaccine manufacturing. A number of other vaccines currently in the development pipeline are being manufactured in SUS, are being developed for manufacturing using modular units, are using novel, higher-yield expression systems, and/or are adopting newer purification technologies. Besides federal biodefense programs funding, many of these efforts are independently funded or also being funded by PATH and other vaccine development-oriented philanthropic organizations.

The confluence and combination of ongoing bioprocessing technological advances will increasingly enable manufacture of vaccines quicker, simpler, and at significantly-reduced costs, often just pennies/dose, with many future vaccines likely to be sold at prices that are comparable or even below current manufacturing costs.

Ronald A. Rader is senior director, Technical Research, at BioPlan Associates. Eric Langer is president of BioPlan Associates, tel. 301.921.5979,
, and a periodic contributor to Outsourcing Outlook.

1. BioPlan Associates, 10th Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production (Rockville, MD USA, April 2013),


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here