of Tanespimycin and its active metabolite (17-AG) in human plasma. Morse Faria^{*1}, Omnia Ismaiel^{1, 2}, James Waltrip¹, Tom Mariannino¹, Moucun Yuan¹, William Mylott¹, Vikram Roongta³, Jim X Shen³, Pathanjali Kadiyala³ ¹Biologics by LC-MS/MS, PPD Laboratories, Richmond, VA,USA ²Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt ³Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ, USA *CONTACT INFORMATION: morse.faria@ppdi.com

PURPOSE

Tanespimycin (17-N-allylamino-17-demethoxygeldanamycin, 17-AAG) is a derivative of the antibiotic geldanamycin that is being studied in the treatment of cancer. 17-amino-17-demethoxygeldanamycin (17-AG) is an active metabolite of Tanespimycin [1-3]. During method development, an in-source reduction was observed arising due to the conversion of the quinone moiety in the analyte(s) and internal standard which impacted the quantitation of the active metabolite. This poster highlights the various steps undertaken to mitigate the impact of in-source reduction. A method was developed and validated for simultaneous measurement of Tanespimycin and its active metabolite from sodium heparin human plasma by LC-MS/MS using a stable isotope labeled Tanespimycin-¹³C₂,¹⁵N as an internal standard for both analvtes.

Tanespimycin (17-AAG)

Tanespmycin metabolite (17-AG)

M	ET	Ή	0	D	(S)	

LC Instrumentation

LC Pumps: HP 1100 Series (Eluting Pump) or Shimadzu LC-10AD VP Analytical Column: Waters, XBridge C18 IS, 2.1 mm x 20 mm, 5 μm Column Temperature: Room Temperature Mobile Phase A: 0.1 % Acetic Acid, v/v Mobile Phase B: 0.1 % Acetic Acid in ACN, v/v Mobile Phase C: 90:10:0.1 MeOH / ACN / Acetic Acid, v/v Injector Loop: 50 μL ; Injection Volume: 60 μL Autosampler Wash 1: 50:50:0.1 ACN / MeOH / Acetic Acid, v/v/v Autosampler Wash 2: 50:50:0.1 H₂O/ MeOH/ Acetic Acid, v/v/v *Eluting Pump Program (Pump 1 to Autosampler)* Elution at 20% Mobile Phase A/80% Mobile Phase B at a flow rate of 500 μL/min for 2.30-3.50 mins Backflush Pump Program – Pump 2 to Valve 1 100% Mobile Phase C at a flow rate of 550 μL/min Make-up Pump Program – Pump 3 to Valve 2 100% Mobile Phase B at a flow rate of 500 μL/min Make-up Pump Program – Pump 4 to Tee Post-column 100% Mobile Phase B at a flow rate of 500 μL/min **MS Instrumentation**

Mass Spectrometer: Sciex API 4000, Triple quadrupole LC/MS/MS Ionization Mode: APCI, MRM, negative ion CAD, CUR, NEB, AUX Gas: Nitrogen; Source Temp: 425 °C Nebulizer Current: -3 µA; Collision Gas Flow (CAD): 8.00

Curtain Gas Flow (CUR): 25.00; Nebulizer Gas Flow (GS1): 30.00

Analyte	~t _R	Q1	Q3	Dwell Time	DP	CE	СХР	EP
	(min)	m/z	m/z	(ms)				
Tanespimycin	2.28	584.4	541.3	100	-75	-30	-13	-10
IS	2.28	588.4	545.3	100	-75	-30	-13	-10
17-AG	1.91	544.4	501.4	100	-80	-30	-13	-10

Development and validation of a LC-MS/MS method for simultaneous measurement Jaaps Pharm

RESULT(S)

		2500							
0 μL	Loop	30 µl	_ /50 μL	Loop	60 μL / 50 μL Loop				
igh	Mid	Low	High	Mid	Low	High	Mid		
NA	1250	NA	NA	1250	NA	NA	1250		
50	110	12.5	950	110	12.5	950	110		
.93	3.28	-5.8	1.99	4.65	3.54	3.13	1.82		
5.4	-5.7	-6.8	5.53	0.23	-4	0.24	8.18		

RESULT(S)	Validation Summary						
Analyte	Tan	espimycin (17-A	AG)	17-AG			
Internal Standard (IS)	Tan	espimycin-13C3,	15N	Tanespimycin-13C3,15N			
Regression, Weighting	Line	ear, 1/concentrat	ion ²	Linear, 1/concentration ²			
Standard Curve	10	0.0 to 2500 ng/m	nL	5.00 to 1250 ng/mL			
QC Concentrations	10.0, 25.0, 180), 1250, 1900 and	d 10000 ng/mL	5.00, 12.5, 90.0, 625, 950, and 5000 ng/mL			
Intra-Assay Statistics (n=36)	Conc. (µg/mL)	Precision	Accuracy	Conc. (µg/mL)	Precision	Accuracy	
LLOQ	10.0	2.1% to 3.6%	-8.7% to -1.8%	5.00	5.2% to 9.9%	-8.7% to -1.8%	
Low	25.0	1.7% to 4.3%	-4.3% to 1.0%	12.50	2.8% to 11.1%	-6.3% to 9.7%	
Geometric Mean	180	1.5% to 3.3%	-3.9% to 2.5%	90.00	3.5% to 7.1%	-6.4% to 12.6%	
Mid	1250	1.7% to 3.9%	-3.7% to 0.4%	625.00	2.8% to 7.1%	-0.4% to 7.4%	
High	1900	1.4% to 2.9%	-5.8% to 0.0%	950.00	3.6% to 4.8%	-5.0% to 5.9%	
Over-the-curve (Diluted 10-fold)	10000	0.4% to 3.4%	-3.2% to 0.6%	5000.00	3.8% to 8.2%	-2.8% to 3.2%	
Low (Only Tanespimycin)	25.0	1.1% to 3.9%	-5.3% to 0.1%	NA	NA	NA	
High (Only Tanespimycin)	1900.0	1.8% to 4.5%	-4.9% to 2.0%	NA	NA	NA	
Low (Only 17-AG)	NA	NA	NA	12.50	2.7% to 7.8%	-6.6% to 6.2%	
High (Only 17-AG)	NA	NA	NA	950.00	4.5% to 7.2%	-0.1% to 7.0%	
Inter-Assay Statistics (n=36)	Conc. (µg/mL)	Precision	Accuracy	Conc. (µg/mL)	Precision	Accuracy	
LLOQ	10.0	3.7	-4.7	5.00	8.30	-4.21	
Low	25.0	3.4	-2.2	12.5	5.97	3.26	
Geometric Mean	180	3.3	-1.3	90.0	7.59	3.95	
Mid	1250	3.2	-1.6	625	5.77	0.90	
High	1900	2.9	-3.3	950	5.88	-0.64	
Over-the-curve (Diluted 10-fold)	10000	3.0	-1.6	5000	6.14	1.10	
Low (Only Tanespimycin)	25.0	3.3	-2.8	NA	NA	NA	
High (Only Tanespimycin)	1900.0	4.1	-2.7	NA	NA	NA	
Low (Only 17-AG)	NA	NA	NA	12.5	7.04	0.33	
High (Only 17-AG)	NA	NA	NA	950	6.08	2.85	
Freeze-thaw Stability (cycles)	Three cycles froz	en at -20 °C and ture under redu	thawed at room	Three cycles frozen at -20 °C and thawed at room			
Extract Stability (hours)	115 hours at 2 to 8 °C			68 hours at 2 to 8 °C			
Frozen Matrix Storage Stability	 118 da	ays at -20 °C and	-70 °C	118 days at -20 °C and -70 °C			
Whole Blood Stability	Whole blood sam for at l	nples were stable east for at least	e at RT and on ice 0.5 hrs	e Whole blood samples were stable at RT and on ice for at least for at least 0.5 hrs			
Reinjection Reproducibility	lt is po	ssible to re-injec	ct runs.	It is possible to re-inject runs.			
Selectivity	No significant i hum	nterfering peaks nan plasma samp	noted in blank ples.	No significant interfering peaks noted in blank human plasma samples.			
Matrix Factor	Lot-to-lot respon	se consistency w	vas demonstrated	Lot-to-lot response consistency was demonstrate			

CONCLUSION(S)

A robust method was developed and validated for simultaneous measurement of Tanespimycin and its active metabolite from sodium heparin human plasma for use in pharmacokinetic studies. Internal standard variation due to in-source reduction of quinone based moiety was addressed by selection of an appropriate mobile phases, internal standard concentration, injection volume, source temperature and continuous maintenance of the source between runs.

REFERENCES

[1] J. L. Grem et al., J. Clin. Oncol., vol. 23, no. 9, pp. 1885–1893, 2005. [2] J. S. Johnston et al., J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 871, no. 1, pp. 15–21, 2008. [3] M. J. Egorinet et *al., Cancer Res.*, vol. 58, no. 11, pp. 2385–2396, 1998. [4] T. Karancsi and P. Slegel, *J. Mass* Spectrom., vol. 34, no. 9, pp. 975–977, 1999. [5] H. Budzikiewicz, Org. Mass Spectrom., vol. 23, no. 8, pp. 561–565, 1988.[6] V. Kertesz and G. J. Van Berkel, J. Am. Soc. Mass Spectrom., vol. 13, no. 2, pp. 109–117, 2002. [7] Elkin et al., J. of Anal. Chem., vol. 68, No. 1, pp. 1162-1164, 2013.

