PTSM: Pharmaceutical Technology Sourcing and Management
Al podcast with Robert Farra, president and COO of MicroCHIPS, who discusses wirelessly controlled and programmable microchip-based drug delivery as an alternative to subcutaneous injections.
Patient compliance is important when developing a drug-delivery system, particularly when treating chronic diseases that require daily administration. One possible alternative to daily injections may be a programmable, wirelessly controlled microchip with an implantable device that allows drugs to be released inside the body without percutaneous connections in or on the patient. An implantable microchip device also offers the potential for real-time dose schedule-tracking and for physicians to remotely adjust treatment schedules.
In a podcast, Robert Farra, president and COO of MicroCHIPS, discusses wirelessly controlled and programmable microchip-based drug delivery as an alternative to subcutaneous injections with Patricia Van Arnum, executive editor of Pharmaceutical Technology. Earlier this year, MicroCHIPs reported a successful Phase I human clinical trial in which human teriparatide, a parathyroid hormone fragment [hPTH(1-34)] and anabolic osteoporosis treatment, was delivered from the device in vivo. The primary objective of the clinical trial was to assess the pharmacokinetics (PK) of the released drug teriparatide from the implanted devices. Safety measures included evaluation of the biological response to the implant and monitoring indicators of toxicity. Secondary objectives were to assess the bioactivity of the drug and to evaluate the reliability and reproducibility of releasing the drug from the device. The device and drug combination were found to be biocompatible with no adverse immune reaction. The resulting PK profiles from the implant were comparable to and had less variation than the PK profiles of multiple, recommended subcutaneous injections of teriparatide. The study also demonstrated that the programmable implant was able to deliver the drug at scheduled intervals. Drug delivery and evaluation in patients occurred over a one-month period and provided proof-of-concept measures of drug release and device durability that support implantable device viability for 12 months or more.
Transformations in Drug Development for Cell and Gene Therapies
March 28th 2025As a recognized leader in immunophenotyping for clinical trials, Kevin Lang from PPD discusses how spectral flow cytometry is transforming drug development, particularly in cell and gene therapies like CAR-T. He also dives into his award-winning research, including his 2024 WRIB Poster Award-winning work, and his insights from presenting at AAPS PharmSci360.
Innovative Solutions in Pre-Filled Syringes for Biologics and Ophthalmic Applications
May 5th 2025Don't miss this webinar delving into: - How to streamline the selection of the primary container and delivery device - How to overcome silicone challenges in PFSs - How to enhance the delivery of highly viscous drug formulation
Advancing Clinical Trials with Spectral Flow Cytometry: A Conversation with Kevin Lang
March 28th 2025As a recognized leader in immunophenotyping for clinical trials, Kevin Lang from PPD discusses how spectral flow cytometry is transforming drug development, particularly in cell and gene therapies like CAR-T. He also dives into his award-winning research, including his 2024 WRIB Poster Award-winning work, and his insights from presenting at AAPS PharmSci360.
Container selection for a highly sensitive drug product: a success story
May 5th 2025For new drug products, it is essential that pharmaceutical companies utilize the experience of container suppliers as early as possible. Read this white paper and discover how Stevanato Group can support you from start to finish.
Design testing strategies to develop a drug-device combination product
May 5th 2025Commercializing a drug-device combination product is a complex challenge to handle alone. Learn how Stevanato Group’s Technology Excellence Centers can provide guidance and execution through the various steps of a Validation Master Plan.