Robots: The Next Phase in Pharmaceutical Automation

Robotic systems provide flexibility and efficiency (and they're not as difficult to use as you think). This article contains bonus online-exclusive material.
Sep 02, 2009
By Pharmaceutical Technology Editors
Volume 33, Issue 9

Robotics and sustainability

Like other industries, the pharmaceutical industry is increasingly concerned with the sustainability of its operations. To improve their sustainability, drugmakers are attempting to reduce waste and pollutants, conserve energy, and improve efficiency. Robots can help the industry achieve these goals. For example, robots' motors, drives, and gearboxes are 90–95% energy efficient, says Barrett.

Robots reduce waste in manufacturing processes, too. Because they perform highly repeatable processes, robots decrease variability and ensure high product quality. This quality assurance reduces the amount of rejected products and wasted materials. Robots can thus reduce pollution and save companies money on ingredients, says Coste-Manière.

Robotic packaging processes are more flexible than conventional ones because they offer consistent, gentle handling, are reprogrammed easily, and require few change parts. This flexibility gives designers great freedom to reconfigure packages and use lightweight or recyclable materials, says Langosch. Well-designed robotic systems offer high reliability and uptime, low maintenance requirements, and fast changeover, thus resulting in high overall equipment effectiveness. "These benefits create an environment where the packaging-line utilization factor contributes to the customer's sustainability goals," says Langosch.

Robots also are compatible with disposable components, which can improve process sustainability by reducing cleaning requirements and the water and chemical consumption that they entail. Several laboratory systems such as the Tecan system use disposables in combination with robots. Personnel can attach single-use parts such as plastic pipette heads to a robot's end effecter. The end effecter can control the pipetting action, and the tip can be discarded.

"People associate robots as being a very expensive mode of manufacturing," says Tallian. "Energy consumption is actually very low. Sometimes people consider them to be hazardous, but robots have been around since the mid 1970s, so they have become very reliable."

Burns says his company identifies three "pillars of sustainability" in robotics: energy, environment (waste reduction), and safety. Several machines in pharmaceutical manufacturing include many mechanical parts that exert a lot of energy to get the movement that is needed. "Those mechanical systems are very inefficient, so the energy savings is toward a much more efficient power transmission ratio of power to movement. That is, first and foremost, one of the big sustainable outputs that you get."

A robot's ability to make different movements and have different motion profiles also helps reduce waste that a machine produces during setup or production. Finally, one of the concerns about robotics is maintaining a safe working envelope around a machine for an operator. A robotic system helps ensure a safe work environment so that an operator cannot intrude into the robot's area of operation.


Economic conditions are raising the stakes and intensifying the competition in the pharmaceutical industry. Drugmakers are intently seeking ways to reduce their expenses, increase their efficiency, and make high-quality products. Robots can help companies achieve these ends by providing speed, precision, repeatability, and flexibility. Because they can improve discovery, pilot production, and small-scale production, robots can be a particularly powerful foundation for the growing biotechnology industry, says Barrett.

lorem ipsum