All NewsBio/Pharma News
All PublicationsPharmTechPharmTech Europe
MarketplaceICH Q9 Revision: A Comprehensive Resource on Quality Risk ManagementPeer-Reviewed ResearchPharmTech ProductsPharma InsightsSponsored PodcastsSponsored VideosSponsored eBooksWhitepapers
Webcasts
All VideosAsk the ExpertBehind The HeadlinesBuy, Sell, HoldDrug Digest VideosDrug Solutions PodcastPeer ExchangeSexy ScienceTech Talk
Conference CoverageConference ListingEvents
Subscribe
AnalyticsAnalyticsAnalytics
Data and Artificial Intelligence
Dosage FormsDosage FormsDosage FormsDosage FormsDosage Forms
Drug DevelopmentDrug DevelopmentDrug DevelopmentDrug DevelopmentDrug DevelopmentDrug Development
ManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturing
OutsourcingOutsourcingOutsourcingOutsourcingOutsourcingOutsourcingOutsourcing
Quality SystemsQuality SystemsQuality SystemsQuality Systems
Spotlight -
  • Analytics
  • Dosage Forms
  • Drug Development
  • Manufacturing
  • Outsourcing
  • Quality Systems
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

AnalyticsAnalyticsAnalytics
Data and Artificial Intelligence
Dosage FormsDosage FormsDosage FormsDosage FormsDosage Forms
Drug DevelopmentDrug DevelopmentDrug DevelopmentDrug DevelopmentDrug DevelopmentDrug Development
ManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturing
OutsourcingOutsourcingOutsourcingOutsourcingOutsourcingOutsourcingOutsourcing
Quality SystemsQuality SystemsQuality SystemsQuality Systems
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

    • Webcasts
    • Subscribe
Advertisement

Formulating with Coprocessed Excipients: Current Trends

September 2, 2023
By Cynthia A. Challener
Publication
Article
Pharmaceutical TechnologyPharmaceutical Technology, September 2023
Volume 47
Issue 9
Pages: 18-21

Coprocessed excipients save time and cost while improving performance in a widening array of dosage forms.

Many petri dishes with calcium carbonate powder on white table | Image Credit: ©New Africa - stock.adobe.com

Many petri dishes with calcium carbonate powder on white table | Image Credit: ©New Africa - stock.adobe.com

Coprocessed excipients are increasingly being used as an innovative and effective solution to overcome API challenges and reduce formulation complexity in direct compression (DC) applications. That is because coprocessing often enhances the properties of those excipients in ways that cannot be achieved if they are processed individually and then mixed together. In addition to improving processabiilty and product performance, coprocessing simplifies many aspects of tablet and capsule formulation and manufacturing and affords numerous business-related benefits.

It is important to highlight that coprocessed excipients are engineered materials designed to address specific pharmaceutical formulation and drug-delivery challenges, according to Joao Marcos Assis, global technical marketing manager at BASF Pharma Solutions. Their manufacturing involves processing of the individual ingredients using different pharmaceutical processes, leading to improved material properties. Their production does not, however, involve the formation of new covalent bonds between the components. Each ingredient maintains its individual chemical fingerprint and toxicological profile. As a result, coprocessed excipients should not be considered as novel ingredients but new ingredients. In addition, coprocessed excipients undergo rigorous testing and regulatory evaluation to ensure patient safety and effectiveness.

For all of these reasons, there is growing focus on the development and use of coprocessed excipients engineered to address top formulating problems including poor API processability, solubility, bioavailbility, and stability in many dosage forms.

Several application areas

The area in which coprocessed excipients have found the widest use is the formulation of coating premixes. “Preparation of coating solutions with consistent quality is often challenging due to their complexity. The use of ready-to-use preparations helps address this issue,” explains Philip Schäfer, head of process and formulation materials at MilliporeSigma, the Life Science business of Merck KGaA, Darmstadt, Germany.

Coprocessed excipients are commonly found in oral solid dosage formulations. In this application, these ingredients are intended to be blended with the API to ensure appropriate processing behavior and the desired final product performance. There are, according to Assis, coprocessed excipients for use in immediate-release, sustained-release, and orally dispersible disintegrating tablets (ODTs), as well as for basic tablet and capsule applications.

Many suitable excipients

Coprocessed excipients have enhanced functionality and performance compared to their individual components. “The combination of excipients in coprocessed excipients often results in synergistic effects that can address specific formulation challenges because of the improved characteristics, such as good blending properties, enhanced flowability, compactability, tabletability, superior lubrication, disintegration, and dissolution for faster and robust manufacturing processes of oral dosage forms,” Assis observes.

Typical functionalities used to generate combined excipient systems include fillers, binders, disintegrants, and lubricants. In ODT formulations, for instance, excipient systems generally combine fillers with disintegrants and/or lubricants, according to Schäfer. “A coprocessed excipient, which already includes a (super)disintegrant but at the same time yields robust and hard tablets by including a binder, can help to streamline formulation development while ensuring a consistent manufacturing process and output,” he notes.

Fillers generally comprise the major component of coprocessed excipients and work as bulking agents. The tableting and compression characteristics of lactose, microcrystalline cellulose, mannitol, dicalcium phosphate, and other fillers are improved by processing them with other ingredients, Assis comments.He adds that binders present plastic deformation characteristics and are responsible for particle binding, improving tablet strength. Povidone, copovidone, hydroxypropyl cellulose (HPC), (hydroxypropyl)methyl cellulose (HPMC), and polyvinyl alcohol-polyethylene glycol (PVA-PEG) copolymer are examples.

Disintegrants such as sodium croscarmellose, sodium starch glycolate, and crospovidone, Assis continues, promote tablet breakup, reducing disintegration time and increasing drug dissolution. Lubricants, meanwhile, reduce ejection force during tablet compression, with sodium stearyl fumarate preferred for coprocessed excipients due to its greater hydrophilicity, compatibility with APIs, and robustness to over-lubrication, according to Assis.

Manufacturing techniques

Coprocessed excipients come in many variations, as do their manufacturing techniques. In general, however, Assis stresses that standard pharmaceutical unit operations are leveraged under mild processing conditions to minimize chemical and physical instabilities. “In formulating a coprocessed material, potential chemical reactions between the ingredients must be considered, since neither new covalent bonds nor potential incompatibilities are desired or acceptable,” he says.

Common processing methods noted by Schäfer include spray drying, cogranulation, mixing, coextrusion, comilling, and cocrystallization. Assis adds that cogranulation can be achieved via fluid-bed granulation, high-shear granulation, dry granulation (roller compaction), or melt granulation. He also points to coprecipitation as another method for the generation of coprocessed excipients with improved functionalities.

“When selecting a manufacturing approach,” emphasizes Schäfer, “it is essential to identify a production strategy that creates a stable, homogeneous blend of the components and affords reliable, multi-functional performance without changing the chemical structure of the excipients employed.”

Drivers for growing acceptance

Indeed, when developing a coprocessed excipient, the main objective is to enhance its material properties, combining the most relevant functionalities, such as filler, binder, disintegrant, and lubricant, in a single material to improve drug processability while ensuring excellent product performance, according to Assis. “These enhanced excipient assets result in manufacturing cost savings, faster drug development, and reduced time-to-market,” he contends. Properties that are often enhanced include flowability, particle size distribution, blending behavior, storage stability, compressibility, and batch-to-batch consistency.

Another key benefit of coprocessed excipients is their ability to simplify formulation development and final product manufacturing. “Using coprocessed excipients reduces the number of ingredients in the formulation, simplifying development and consolidating quality-by-design (QbD) efforts. It also minimizes testing expenses by reducing quality control analysis, material handling, and documentation requirements,“ Assis explains.

Further drivers for use of excipient combinations highlighted by Schäfer include their ability to solve unmet formulation and delivery challenges, improve process efficiency, and enable new manufacturing approaches such as continuous processing, all while providing improved process economics. “In addition to combining different functionalities in one product and supporting a highly efficient and effective approach to drug development, coprocessed excipients provide flexibility to adapt formulations to specific needs,” he says.

Schäfer goes on to note that because the performance of coprocessed excipient systems is typically tailored to be robust and consistent, they are particularly well suited for processes that are highly dependent on performance parameters, such as continuous manufacturing.

In many cases, in fact, Schäfer observes that excipient systems are developed to solve a specific challenge, which may be as simple as reducing the number of process steps (e.g., the number of feeders, which is limited by the process set-up) or improving process parameters such as flow or sticking of formulations to equipment. The fact that the use of coprocessed excipients typically require less formulation and process know-how and reduces the risk of errors throughout is yet another benefit.

There are also business advantages to using coprocessed excipients, according to Assis. Beyond R&D and production benefits, these include purchasing and warehousing benefits due to a reduction of the number of excipients and excipient vendors, which reduces sourcing complexities and frees up expensive storage space, and quality and regulatory benefits from minimization of testing efforts and expenses, which reduces paperwork.

Given all of these advantages, it is not surprising that formulators are increasingly open to using coprocessed excipients. “We have observed that formulators today are more willing to explore combined excipients during product development. In part, this interest is likely due to the fact that APIs are becoming more and more challenging, particularly with respect to poor solubility, at a time when the pressure for realizing successful drug development in much less time is rising. Traditional excipients alone may not be able to overcome these hurdles,” Schäfer says.

An all-in-one solution

For oral solid dosage forms, DC is the preferred manufacturing method as it is the simplest and contributes to reduced time and cost for production. For many novel APIs under development today, however, DC is not easily implemented due to their unfavorable characteristics such as high cohesiveness and poor flow and compressibility, according to Assis. In these cases, DC processes require the use of multiple excipients to obtain suitable material flow, compressibility, and efficient lubrication.

“Determining the proper excipient combinations and concentrations is often time-consuming and expensive, however. Even after optimizing the mixture of excipients, the formulation requires several processing steps to create the final blend. Formulations based on coprocessed excipients are a solution to these challenges,” Assis explains.

“All-in-one” excipient systems that combine multiple excipients into a single material have thus become a recent focus in the market, Schäfer observes. In these products, all of the basic tableting excipients are combined such that only one additive and the API are included in the final formulation.

“This approach reduces significantly the number of excipients necessary to achieve excellent processability and performance and requires a single dry blending with the API using standard process equipment. Consequently, all-in-one coprocessed excipients reduce drug product development time and manufacturing complexity and may significantly expedite time-to-market,” Assis adds.

Several notable trends

The use of coprocessed excipients can vary depending on the properties of the API, the therapeutic requirements, and the desired formulation characteristics. In addition, formulators carefully evaluate and select coprocessed excipients to ensure they meet safety, efficacy, and regulatory standards before integrating them into pharmaceutical products, according to Assis.

One of the most important trends being enabled by coprocessed excipients is direct compression continuous manufacturing (DCCM). “Coprocessed excipients can facilitate more effective DCCM processes due to their excellent blending properties, flowability, and tabletability and minimization of the required number of gravimetric feeders and complexity of the process,” Assis notes.

Specifically, Assis highlights several benefits of coprocessed excipients for DCCM processes. The reduced number of ingredients in the formulation implies a faster material characterization and simplified design-of-experiment approach, reducing time and costs. Due to the high flowability, feeding performance in a gravimetric loss-in-weight feeder is enhanced with fewer perturbations. Development of an online process analytical technology (PAT) method is streamlined because of the reduced number of spectra and the analysis is less variable and more predictive. Besides, a dynamic residence time distribution (RTD) model of the API in a mixture with a single all-in-one coprocessed excipient can be more precise.

A second notable trend is the coprocessing of APIs with excipients, in other words coprocessed formulated drug products. This approach is being explored as a means for overcoming manufacturing challenges associated with DC formulations, Assis says.

Drugs can be pre-blended with excipients such as fumed silica, dry-granulated, or processed with low-melting point materials including poloxamers (P 188 or P 407), high-molecular PEGs (3350, 6000, 8000), and low-molecular-weight povidones (PVP K-12 or K-17) via melt granulation or melt coating using an extruder, according to Assis. Stearic acid, polyvinyl acetate, and other waxes, meanwhile, can be used for sustained-released products. “Coprocessing the API and the excipients can result in better particle shape, flowability, compressibility, stability, and dissolution, as well as taste improvement,” he contends.

Aside from these two trends, Assis highlights efforts by both pharmaceutical companies and excipient manufactures to create new coprocessed excipients with enhanced functionalities, particularly coprocessed excipients that can improve solubility, bioavailability, stability, and overall drug performance.

These improved properties have enabled coprocessed excipients to play a growing role in the development of advanced drug delivery systems, including controlled-release formulations, multi-particulate systems, and amorphous solid dispersions. “Coprocessed excipients have also been explored in topical and transdermal drug delivery systems, facilitating drug penetration through the skin and improving localized drug delivery while providing easy and fast processing,” Assis comments.

In addition, coprocessed excipients have been used to improve patient compliance by enabling the development of easier-to-swallow tablets, taste-masking formulations, and other patient-friendly dosage forms, according to Assis. He also notes that collaborations between drug manufacturers and excipient companies focused on the development of innovative coprocessed excipients for specific drugs and therapeutic areas have increased in number in recent years.

Regulatory landscape

Although formulators are now more open to coprocessed excipients than they were in the past, the regulatory landscape can still prove to be an obstacle. In contrast to traditional excipients, coprocessed excipients have no dedicated pharmacopoeia monographs and are treated almost as novel by regulatory authorities if not yet used in already approved drug products, Schäfer observes. As a result, there is some regulatory uncertainty for new coprocessed excipients because they can only be introduced as part of a new drug application. “Today, many pharmaceutical companies are hesitant to take on this increased effort and risk,” Schäfer comments.

Regulatory authorities are, however, aware that there are limitations to the ability of traditional excipients to solve current formulating challenges and that new excipient combinations can provide significant benefits in bringing a much-needed therapy to the market, according to Schäfer. He adds that activities are ongoing to improve the situation for coprocessed excipients, such as the joint IPEC, European Fine Chemicals Group, Active Pharmaceutical Ingredients Committee (a sector group of the European Chemical Industry Council) initiative regarding European Union Excipient Master Files. “We expect that the regulatory situation for excipient combination will be eased in the future, opening up many new opportunities in the pharmaceutical sector,” Schäfer concludes.

About the author

Cynthia A. Challener, PhD, is a contributing editor to Pharmaceutical Technology®.

Article details

Pharmaceutical Technology
Vol. 47, No. 9
September 2023
Pages: 18-21

Citation

When referring to this article, please cite it as Challener, C.A. Formulating with Coprocessed Excipients: Current Trends. Pharmaceutical Technology 2023 47 (9).

Download Issue PDF
Articles in this issue

balance scale with pills| Image Credit: ©Alexander - Stock.adobe.com
In Equal Measures: The Importance of Excipient Quality
Cyborg hand holding a Medical icon and connection 3d rendering | Image Credit: ©Production Perig - stock.adobe.com
The Future is the Present: Artificial Intelligence in Pharmaceutical Manufacturing
Medical concept of compliance. Pharmacy law compliance. | Image Credit: © wladimir1804 - © wladimir1804 - stock.adobe.com
Knowledge as the Currency of Managing Risk: A Smart Investment for Patients
Oncolytic Virus immunotherapy and cancer vaccine Therapy as a treatment to kill cancers by attacking the malignant tumor cell and infecting them and destroying the pathogen | Image Credit: © freshidea - Stock.adobe.com
Harnessing the Power of Oncolytic Viruses
Many petri dishes with calcium carbonate powder on white table | Image Credit: ©New Africa - stock.adobe.com
Formulating with Coprocessed Excipients: Current Trends
wuerfel_parts_03 | Image Credit: ©rcx - stock.adobe.com
Improving Manufacturing Flexibility with Modules
Drug manufacturing laboratory equipment. | Image Credit:©Unique Vision - stock.adobe.com
Preserving Process Integrity: The Importance of Equipment Cleaning
Oil dropping, Laboratory and science experiments, Formulating the chemical for medical research, Quality control of petroleum industry products concept. Generative AI | Image Credit: © Jonatan - stock.adobe.com
Outsourcing Formulation Services for Biologics
Landkarte *** Europa | Image Credit: © beugdesign - Stock.adobe.com
Accelerating Clinical Trials in the EU
Retro classic typewriter from circa 1950s with sheet of paper and aged books on wooden desk front aquamarine wall background. Nostalgic writer's work place concept. Vintage old style filtered photo | Image Credit: © BrAt82 - stock.adobe.com
Booster Shot for Pharma
keyboard closeup | Image credit: © Karramba Production - stock.adobe.com
Clinical Trials and their Impact on the Pharma Industry
Question mark background | Image Credit: © Leigh-Prather - © Leigh Prather - stock.adobe.com
Clearing Up Confusion in Inspection Terminology
compass leadership | Image credit: © Olivier Le Moal - stock.adobe.com
Billions of Reasons to be Buoyant
Waters Corporation’s XBridge Premier GTx BEH size exclusion chromatography (SEC) columns
Size Exclusion Chromatography Columns
Charles Ross & Son Company's Sanitary Double Planetary Mixer Model DPM-4S and Sanitary Discharge System Model DS-4S
Mixing Systems for Ultra-High Viscosity Materials
Recent Videos
Related Content

Coronavirus Covid-19 background - 3d rendering | Image Credit: © Production Perig - stock.adobe.com

EMA Recommends Update to COVID-19 Vaccines for 2025-26 Campaign

Patrick Lavery
May 19th 2025
Article

The LP.8.1 variant of the SARS-CoV-2 virus differs from the JN.1 family that previous vaccines had been designed to target, and has surpassed JN.1 as the variant circulating most widely worldwide.


Drug Solutions Podcast: A Closer Look at mRNA in Oncology and Vaccines

Drug Solutions Podcast: A Closer Look at mRNA in Oncology and Vaccines

Feliza Mirasol
April 30th 2024
Podcast

In this episode fo the Drug Solutions Podcast, etherna’s vice-president of Technology and Innovation, Stefaan De Koker, discusses the merits and challenges of using mRNA as the foundation for therapeutics in oncology as well as for vaccines.


Pharmacy, hands and prescription medicine for customer with paper bag for healthcare, drugs and pharmaceutical. Closeup of a pharmacist or medical worker with person in drugstore for retail service | Image Credit: © Azee Jacobs/peopleimages.com - stock.adobe.com

Trump Issues Executive Order Aimed at Reducing Prescription Drug Prices for US Patients

Patrick Lavery
May 13th 2025
Article

According to the White House, the order builds on actions taken in the president’s first term to reduce price disparities domestically.


Drug Solutions Podcast: Applying Appropriate Analytics to Drug Development

Drug Solutions Podcast: Applying Appropriate Analytics to Drug Development

March 26th 2024
Podcast

In this episode of the Drug Solutions Podcast, Jan Bekker, Vice President of Business Development, Commercial and Technical Operations at BioCina, discusses the latest analytical tools and their applications in the drug development market.


Insulin Vial Trapped in Ice for Diabetic Challenges | Image Credit: ©Nisit – stock.adobe.com

Parenteral Formulation: Deciding When to Go Frozen or Freeze-Dried

Cynthia A. Challener
May 8th 2025
Article

Scientific, economic, and practical factors should be considered when choosing between the frozen state and lyophilization.


Protect environement | Image Credit: ©Y. L. Photographies -stock.adobe.com

Sustainability by Design in the Context of Bioprocess Development

Cynthia A. Challener
May 6th 2025
Article

Incorporating sustainable practices into process designs as early as possible ensures optimal performance.

Related Content

Coronavirus Covid-19 background - 3d rendering | Image Credit: © Production Perig - stock.adobe.com

EMA Recommends Update to COVID-19 Vaccines for 2025-26 Campaign

Patrick Lavery
May 19th 2025
Article

The LP.8.1 variant of the SARS-CoV-2 virus differs from the JN.1 family that previous vaccines had been designed to target, and has surpassed JN.1 as the variant circulating most widely worldwide.


Drug Solutions Podcast: A Closer Look at mRNA in Oncology and Vaccines

Drug Solutions Podcast: A Closer Look at mRNA in Oncology and Vaccines

Feliza Mirasol
April 30th 2024
Podcast

In this episode fo the Drug Solutions Podcast, etherna’s vice-president of Technology and Innovation, Stefaan De Koker, discusses the merits and challenges of using mRNA as the foundation for therapeutics in oncology as well as for vaccines.


Pharmacy, hands and prescription medicine for customer with paper bag for healthcare, drugs and pharmaceutical. Closeup of a pharmacist or medical worker with person in drugstore for retail service | Image Credit: © Azee Jacobs/peopleimages.com - stock.adobe.com

Trump Issues Executive Order Aimed at Reducing Prescription Drug Prices for US Patients

Patrick Lavery
May 13th 2025
Article

According to the White House, the order builds on actions taken in the president’s first term to reduce price disparities domestically.


Drug Solutions Podcast: Applying Appropriate Analytics to Drug Development

Drug Solutions Podcast: Applying Appropriate Analytics to Drug Development

March 26th 2024
Podcast

In this episode of the Drug Solutions Podcast, Jan Bekker, Vice President of Business Development, Commercial and Technical Operations at BioCina, discusses the latest analytical tools and their applications in the drug development market.


Insulin Vial Trapped in Ice for Diabetic Challenges | Image Credit: ©Nisit – stock.adobe.com

Parenteral Formulation: Deciding When to Go Frozen or Freeze-Dried

Cynthia A. Challener
May 8th 2025
Article

Scientific, economic, and practical factors should be considered when choosing between the frozen state and lyophilization.


Protect environement | Image Credit: ©Y. L. Photographies -stock.adobe.com

Sustainability by Design in the Context of Bioprocess Development

Cynthia A. Challener
May 6th 2025
Article

Incorporating sustainable practices into process designs as early as possible ensures optimal performance.

About Us
Advertise
Contact Us
Editorial Info
Editorial Advisory Board
Do Not Sell My Personal Information
Privacy Policy
Terms and Conditions
Contact Info

2 Commerce Drive
Cranbury, NJ 08512

609-716-7777

© 2025 MJH Life Sciences

All rights reserved.