All NewsBio/Pharma News
All PublicationsPharmTechPharmTech Europe
MarketplaceICH Q9 Revision: A Comprehensive Resource on Quality Risk ManagementPeer-Reviewed ResearchPharmTech ProductsPharma InsightsSponsored PodcastsSponsored VideosSponsored eBooksWhitepapers
Webcasts
All VideosAsk the ExpertBehind The HeadlinesBuy, Sell, HoldDrug Digest VideosDrug Solutions PodcastPeer ExchangeSexy ScienceTech Talk
Conference CoverageConference ListingEvents
Subscribe
AnalyticsAnalyticsAnalytics
Data and Artificial Intelligence
Dosage FormsDosage FormsDosage FormsDosage FormsDosage Forms
Drug DevelopmentDrug DevelopmentDrug DevelopmentDrug DevelopmentDrug DevelopmentDrug Development
ManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturing
OutsourcingOutsourcingOutsourcingOutsourcingOutsourcingOutsourcingOutsourcing
Quality SystemsQuality SystemsQuality SystemsQuality Systems
Spotlight -
  • Analytics
  • Dosage Forms
  • Drug Development
  • Manufacturing
  • Outsourcing
  • Quality Systems
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

AnalyticsAnalyticsAnalytics
Data and Artificial Intelligence
Dosage FormsDosage FormsDosage FormsDosage FormsDosage Forms
Drug DevelopmentDrug DevelopmentDrug DevelopmentDrug DevelopmentDrug DevelopmentDrug Development
ManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturingManufacturing
OutsourcingOutsourcingOutsourcingOutsourcingOutsourcingOutsourcingOutsourcing
Quality SystemsQuality SystemsQuality SystemsQuality Systems
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

    • Webcasts
    • Subscribe
Advertisement

Trends and Innovations in Continuous Coating

January 25, 2008
By Ruey-ching (Richard) Hwang, PhD
Robert Noack
Article

Equipment and Processing Report

Equipment and Processing ReportEquipment and Processing Report-01-25-2008
Volume 0
Issue 0

The technique of continuous coating has undergone great change since it was introduced to the pharmaceutical industry more than a decade ago, and its benefits have multiplied.

The technique of continuous coating has undergone great change since it was introduced to the pharmaceutical industry more than a decade ago, and its benefits have multiplied. At first, the method enhanced throughput and increased operational efficiencies. Manufacturers now use continuous coating to optimize process robustness and maximize the agility of manufacturing technology.

The first continuous coaters used in the pharmaceutical industry were adapted from seed-coating machines developed by Coating Machinery System  (CMS, Huxley, IA). The technology was designed to increase the size of seeds so that automated planters could plant them. The original design consisted of two stacked, perforated cylinders and multiple spray guns. Thomas Engineering (Hoffman Estates, IL) was the first company to develop a continuous coater designed specifically for the pharmaceutical industry. Shortly after Thomas introduced its coater, Vector (Marion, IA) acquired the CMS system and redesigned it for the pharmaceutical industry. The Thomas and Vector units have a throughput of roughly 200–800 kg/h.

O’Hara Technologies (Richmond Hill, Canada) entered the market later with a design similar to those of Thomas and Vector, but with a throughput of 700–2000 kg/h. All of these coaters share the same basic design. Tablets are fed into one end of a long, continuous, perforated, rotating cylinder. Next, they are conveyed through the cylinder by baffles, coated by multiple spray heads, and dried using conditioned air flow. Finally, the tablets are discharged from the unit.

Niro’s (Columbia, MD) “Supercell” machine represents a recent advancement in continuous coating. The unit is designed as a continuous cell coater and is similar in appearance to a Wurster coater. Tablets are loaded into a feed hopper. A subset of tablets (30–120 g) is fed into the cell by a vibrating loss-on-weight feeder. The unit coats this subset of tablets in 1–3 min. The Supercell coater provides a throughput of 1–4 kg/h.

The reasons to use continuous coating technology vary depending on the drug product’s phase of development. Clinical-supplies manufacturing typically requires small batches of many doses to meet trial needs and fulfill the clinical-study design. In addition, the product must be supplied quickly to accommodate the clinical-trial’s schedule. The advent of small-scale continuous coaters allows manufacturers to ensure that clinical batches match the studies’ needs. Manufacturers can thus reduce the waste that results from overmanufacturing.

In commercial manufacturing, the benefits of continuous coating technology are predominantly cost and efficiency. High throughput, large yield, and lower capital and facility expenditures are the primary advantages. Continuous coating technology has the additional advantage of featuring a smaller footprint than traditional units.

On the other hand, continuous coating does entail some startup and end-of-batch waste, which may limit the technique’s appeal in terms of yield. Process analytical technology (PAT), however, may reduce yield losses and permit an accurate, real-time assessment of coating amount and coating uniformity. The US Food and Drug Administration’s Guidance for Industry-PAT: ­A Framework for Innovative Pharmaceutical Manufacturing and Quality Assurance opened the doors for pharmaceutical companies to develop and use new processing technologies. The guidance aims to help pharmaceutical manufacturers by “providing a set of scientific principles and tools supporting innovation and a strategy for regulatory implementation that will accommodate innovation.”

The adoption of continuous coating technology has so far been limited, perhaps by the historical definition of a batch in the pharmaceutical industry and by the industry’s aversion to bringing new manufacturing approaches to regulators’ attention. With the advent of the PAT guidance and advancement of PAT technologies, pharmaceutical manufacturers will be able to take advantage of the benefits of continuous coating and still meet the need for quality.

Ruey-ching (Richard) Hwang, PhD, is a senior director of pharmaceutical sciences at Pfizer and a member of Pharmaceutical Technology’s editorial advisory board. Robert Noack is a senior principal scientist at Pfizer.

Articles in this issue

Trends and Innovations in Continuous Coating
Are Disposable Components a Green Solution?
January 2008 Editor’s Picks
Recent Videos
Behind the Headlines, Episode 17
Related Content

·Mirai Bio and Thermo Fisher are partnering to integrate design, delivery, and CGMP manufacturing for nucleic acid-based therapeutics.  ·The collaboration will leverage Thermo Fisher’s RNA and advanced formulations facility to support scalable development of genetic medicines.  ·Mirai’s machine intelligence platform will be combined with Thermo Fisher’s technical and manufacturing expertise to streamline drug development workflows.

Mirai Bio and Thermo Fisher Partner to Advance Genetic Medicine Manufacturing

Christopher Cole
May 21st 2025
Article

Mirai Bio and Thermo Fisher partner to integrate AI-driven design with CGMP manufacturing, aiming to streamline development of genetic medicines.


Site Logo

Transformations in Drug Development for Cell and Gene Therapies

PPD;Thermo Fisher Scientific
March 28th 2025
Podcast

As a recognized leader in immunophenotyping for clinical trials, Kevin Lang from PPD discusses how spectral flow cytometry is transforming drug development, particularly in cell and gene therapies like CAR-T. He also dives into his award-winning research, including his 2024 WRIB Poster Award-winning work, and his insights from presenting at AAPS PharmSci360.


Abnormal plasma cell or b-cell in multiple myeloma emitting paraprotein 3d illustration | Image Credit: © LASZLO - stock.adobe.com

CellCentric Completes $120 Million Series C Funding Round for Multiple Myeloma Treatment Inobrodib

Patrick Lavery
May 21st 2025
Article

Inobrodib is being developed as a first-in-class oral cancer drug that the company says will be able to treat not only multiple myeloma, but other specific cancers as well.


Advancing Clinical Trials with Spectral Flow Cytometry: A Conversation with Kevin Lang

Advancing Clinical Trials with Spectral Flow Cytometry: A Conversation with Kevin Lang

PPD;Thermo Fisher Scientific
March 28th 2025
Podcast

As a recognized leader in immunophenotyping for clinical trials, Kevin Lang from PPD discusses how spectral flow cytometry is transforming drug development, particularly in cell and gene therapies like CAR-T. He also dives into his award-winning research, including his 2024 WRIB Poster Award-winning work, and his insights from presenting at AAPS PharmSci360.


Coronavirus Covid-19 background - 3d rendering | Image Credit: © Production Perig - stock.adobe.com

EMA Recommends Update to COVID-19 Vaccines for 2025-26 Campaign

Patrick Lavery
May 19th 2025
Article

The LP.8.1 variant of the SARS-CoV-2 virus differs from the JN.1 family that previous vaccines had been designed to target, and has surpassed JN.1 as the variant circulating most widely worldwide.


IRVINE, CALIFORNIA - 16 APRIL 2020: Student Center and Visitor Center Building on the campus of the University of California Irvine, UCI. | Image Credit: © Steve Cukrov - stock.adobe.com

UC Irvine Lab Studies NLRP3 Inflammasome for Inflammatory Disease Treatment Potential

Patrick Lavery
May 19th 2025
Article

Researchers say they have discovered the first drug mechanism that binds to the pyrin domain to block NLRP3 and prevent a series of reactions resulting in inflammation.

Related Content

·Mirai Bio and Thermo Fisher are partnering to integrate design, delivery, and CGMP manufacturing for nucleic acid-based therapeutics.  ·The collaboration will leverage Thermo Fisher’s RNA and advanced formulations facility to support scalable development of genetic medicines.  ·Mirai’s machine intelligence platform will be combined with Thermo Fisher’s technical and manufacturing expertise to streamline drug development workflows.

Mirai Bio and Thermo Fisher Partner to Advance Genetic Medicine Manufacturing

Christopher Cole
May 21st 2025
Article

Mirai Bio and Thermo Fisher partner to integrate AI-driven design with CGMP manufacturing, aiming to streamline development of genetic medicines.


Site Logo

Transformations in Drug Development for Cell and Gene Therapies

PPD;Thermo Fisher Scientific
March 28th 2025
Podcast

As a recognized leader in immunophenotyping for clinical trials, Kevin Lang from PPD discusses how spectral flow cytometry is transforming drug development, particularly in cell and gene therapies like CAR-T. He also dives into his award-winning research, including his 2024 WRIB Poster Award-winning work, and his insights from presenting at AAPS PharmSci360.


Abnormal plasma cell or b-cell in multiple myeloma emitting paraprotein 3d illustration | Image Credit: © LASZLO - stock.adobe.com

CellCentric Completes $120 Million Series C Funding Round for Multiple Myeloma Treatment Inobrodib

Patrick Lavery
May 21st 2025
Article

Inobrodib is being developed as a first-in-class oral cancer drug that the company says will be able to treat not only multiple myeloma, but other specific cancers as well.


Advancing Clinical Trials with Spectral Flow Cytometry: A Conversation with Kevin Lang

Advancing Clinical Trials with Spectral Flow Cytometry: A Conversation with Kevin Lang

PPD;Thermo Fisher Scientific
March 28th 2025
Podcast

As a recognized leader in immunophenotyping for clinical trials, Kevin Lang from PPD discusses how spectral flow cytometry is transforming drug development, particularly in cell and gene therapies like CAR-T. He also dives into his award-winning research, including his 2024 WRIB Poster Award-winning work, and his insights from presenting at AAPS PharmSci360.


Coronavirus Covid-19 background - 3d rendering | Image Credit: © Production Perig - stock.adobe.com

EMA Recommends Update to COVID-19 Vaccines for 2025-26 Campaign

Patrick Lavery
May 19th 2025
Article

The LP.8.1 variant of the SARS-CoV-2 virus differs from the JN.1 family that previous vaccines had been designed to target, and has surpassed JN.1 as the variant circulating most widely worldwide.


IRVINE, CALIFORNIA - 16 APRIL 2020: Student Center and Visitor Center Building on the campus of the University of California Irvine, UCI. | Image Credit: © Steve Cukrov - stock.adobe.com

UC Irvine Lab Studies NLRP3 Inflammasome for Inflammatory Disease Treatment Potential

Patrick Lavery
May 19th 2025
Article

Researchers say they have discovered the first drug mechanism that binds to the pyrin domain to block NLRP3 and prevent a series of reactions resulting in inflammation.

About Us
Advertise
Contact Us
Editorial Info
Editorial Advisory Board
Do Not Sell My Personal Information
Privacy Policy
Terms and Conditions
Contact Info

2 Commerce Drive
Cranbury, NJ 08512

609-716-7777

© 2025 MJH Life Sciences

All rights reserved.