Developed in the 1950s as a means to survive and compete against the giants of the automotive sector, lean manufacturing helped Toyota evolve from a small-volume producer (with little capital) to become a high-volume manufacturer in a process-rich environment. Toyota achieved this by using developments such as total production maintenance (TPM), just-in-time (JIT), Kanban, value stream mapping and Kaizen events.1 A summary of some of the lean terminology is shown in Table 1.
Clarification processes are critical steps in production of biological products because they directly affect yield, product consistency, and reproducibility.
The pharmaceutical industry handles large volumes of granular materials such as powder blends for tablet production and filled capsules everyday (1, 2). Slight changes in ingredient properties or process operation conditions can have a major effect on a finished product's quality. Given the market and regulatory uncertainties that are commonly associated with drug product development, pharmaceutical companies typically have several drugs in various developmental stages at the same time. Because of this volume, the industry must have computer-based rapid-prototyping tools that can efficiently capture and resolve the technical aspects of drug product development so that companies can confidently make decisions about drug portfolio management and planning (3, 4).
Creation and qualification of scale-down models are essential for performing several critical activities that support process validation and commercial manufacturing. As shown in Figure 1, these activities include process characterization and production support studies that are performed to evaluate column and membrane lifetimes, demonstrate clearance of host-cell impurities and viruses and troubleshoot manufacturing issues. While the underlying fundamentals are relatively the same as those when scaling up, some unique considerations should be taken when scaling unit operations down.4
Essentially, RAD is a set of tools…that allows for rapid prototyping and reiterative testing that enable faster development and implementation of new applications.
This article introduces the application of high-resolution ultrasonic spectroscopy (HR-US) for the analysis of emulsions and suspensions. The authors outline the principles of the technique and illustrate its application for analysis of the crystallization of lysozyme and the formation of a microemulsion.
USP monographs, if they are consistently observed and applied, can help reduce medical gas errors.
The discovery of suitable lead structures for new drugs from an inexhaustibly large reservoir of theoretically possible compounds is one of the biggest challenges for the pharmaceutical industry. In the last few years, combinatorial chemistry methods have been developed to synthesize a huge amount of diverse new chemical entities (NCEs), which may subsequently be tested for biological activity in vitro.
Although there is no global regulation or industry standard on labelling requirements, some organizations are beginning to lay down their own standards.
Antibody fragments pose unique challenges in terms of recovery, purification, and formulation.
There are over 250 operations in the EU in various stages of development involving tissue engineering, regeneration and subsequent attempts at commercialization.
With all the challenges that the manufacturing industry has had to deal with over the last ten years - growing compliance demands, increased competition and price pressures - it is perhaps not surprising that pharmaceutical firms are increasingly trying to streamline their manufacturing processes to maintain profit margins, speed up the time-to-market, as well as comply with market regulations that are becoming increasingly stringent.
A limit test using ion mobility spectrometry (IMS) has the potential to dramatically reduce the time required for cleaning verification and cleaning method development. The traditional approach to cleaning verification, often using HPLC, is relatively resource intensive and can lead to significant delays in reporting results. The main advantage of IMS is that results are seen virtually instantaneously, so any necessary re-measurement can be done very quickly. If the results demonstrate cleanliness, production can resume in a matter of hours not days.
Creation and qualification of scale-down models are essential for performing several critical activities that support process validation and commercial manufacturing. As shown in Figure 1, these activities include process characterization and production support studies that are performed to evaluate column and membrane lifetimes, demonstrate clearance of host-cell impurities and viruses and troubleshoot manufacturing issues. While the underlying fundamentals are relatively the same as those when scaling up, some unique considerations should be taken when scaling unit operations down.4
The Active Pharmaceutical Ingredients Committee (APIC) - a sector group of Conseil European des Federations de l'Industrie Chimique (CEFIC) - first voiced the need for EU GMP API legislation in 1993 to help ensure the safety of medicines. In 2000, the International Conference on Harmonisation (ICH) finalized the harmonized API GMP Guideline Q7, which became legal in the US and Japan in 2001. The EU adopted a directive in March 2004 that includes the requirement for APIs in medicines for the EU market to comply with ICH/Q7A. Member States are transposing the directive into their national law: about half of them have completed this process, seven more are well on their way to completion, while seven others are still in earlier stages of adoption.
Although the most commonly used microcrystalline cellulose grade in direct-compression applications is the fine grade 102, the use of coarse grade 12 may offer better weight and content uniformity results.
Being the first to gain the most is a fundamental principle in the generics business because several companies compete to create generics of successful products going off patent. For a generics company to maintain revenue growth in a market in which product prices continue to fall, it must secure a continuous flow of new products, with quality and speed to market being key drivers. Thus, generics companies must be highly skilled in product and process development (1), the generics business, and achieving bioequivalence-the most critical development area.
The first part of this article discussed general strategies for validation extensions to other test method components, laboratories and even different test methods.1 This second part provides practical tips on how to maintain test method suitability long after the formal completion of analytical method validation (AMV) studies.
A laboratory information management system (LIMS) can control, manage, organize and document information thus saving time and money.
Box-Behnken modeling was used to optimize a resinate complex, to mask the taste of levocetirizine dihydrochloride and montelukast sodium in orally disintegrating tablets.
The tablet formation of six different carrageenans was analysed by 3D modelling, Heckel analysis, the pressure–time function and energy calculations. It was found that the fibres experienced plastic deformation, which was accompanied by a great deal of elasticity. Measurement of elastic recovery in dependence on maximum relative density and time showed that relaxation is completed a considerable amount of time after tabletting. Shrinking of the fibres occurred in parallel with elastic recovery as a result of the reorganization of the fibre structure. The tabletting behaviour of carrageenans makes them suitable for the soft tabletting of pressure sensitive materials.
The PAT guidance indicates a variety of risk-based approaches to managing the introduction of on-line analysers into existing processes with the aim of minimizing the regulatory burden for the manufacturer and encouraging innovation.
Can high-resolution sound velocity measurements be used as an analytical tool?
Interest in more advanced drug delivery systems has increased, with an acceleration in the discovery and development of novel therapeutic macromolecules for targeted applications. Computational fluid dynamics is a design tool that allows producers of these and other products to evaluate different models rapidly and cost-effectively.
The latest generation of HPLC instruments offers a new level of data security. Improvements in embedded instrument control programs and mass storage functionality offer 'no data loss' guarantee. This level 5 instrument control makes data acquisition audit-safe and increases laboratory technicians' efficiency, freeing them up from any reanalysis work.
The pharmaceutical industry handles large volumes of granular materials such as powder blends for tablet production and filled capsules everyday (1, 2). Slight changes in ingredient properties or process operation conditions can have a major effect on a finished product's quality. Given the market and regulatory uncertainties that are commonly associated with drug product development, pharmaceutical companies typically have several drugs in various developmental stages at the same time. Because of this volume, the industry must have computer-based rapid-prototyping tools that can efficiently capture and resolve the technical aspects of drug product development so that companies can confidently make decisions about drug portfolio management and planning (3, 4).
To produce an application or solution for a specific domain, a vendor must demonstrate a thorough understanding of the domain and its specific challenges.
Although physicochemical preformulation screening is practised universally within the pharmaceutical industry, physicomechanical screening is applied to a lesser extent and often only where a problem exists.
The EU ATEX Directive 1999/92/EC (ATEX 137) regarding the minimum requirements to protect the health and safety of workers potentially at risk from explosive atmospheres came into European law in January 2000. In the UK, the ATEX 137 Directive has been implemented as part of the Dangerous Substances and Explosive Atmospheres Regulations (DSEARs), which were issued in December 2002.